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Factorization

• How do we make sense of this environment?

Factorization!

• New physics at hard scale; MH for 
example

• Parton shower evolution from MH 
to !QCD

• Final state hadronization at !QCD

• Parton distribution functions at 
!QCD

• Multiple parton interactions, 
hadron decays, ...

The Big Picture
• Colliders are complicated environments:

• Recent developments in EFT methods:

-Factorization, Resummation, parton showers, jets, ...
- Isolated Drell-Yan, Event shapes, jet vetoes (Stewart, Tackmann, Waalewijn; Kelley, Schwartz,...)

- Fragmentation functions (Procura, Stewart,...)

- Higgs Production, Threshold resummation (Becher, Neubert, Pecjak,...)

- Parton Showers (Bauer, Baumgart, Hornig, Schwartz, Stewart, Tackmann, Thaler, ...)
- many others...

-Initial state parton shower
-Hard interaction of signal process

-Underlying events
-Final state parton shower
-Hadronization
-Beam remnants
- ...

-Multijet final states
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of studying transverse momentum distributions at hadron colliders. We outline future direc-

tions for the study of transverse momentum resummation within the effective field theory

framework.

Our paper is organized as follows. In Section II we pedagogically review the factorization

theorem derived in our previous work [19] and present its extension to electroweak gauge

boson production. The details of this extension are presented in appendix A. All analytic

results for the matching coefficients, iBFs and iSFs required for phenomenology to NLL and

partial NNLL accuracy are presented in Section III. The structure of the RG running in

the effective theory, which resums large logarithms of the form ln (M/pT ), is discussed in

Section IV. Simple analytic expressions for the resummed cross sections valid through NLL

are shown in Section V. We discuss the relationship between the various quantities appearing

in the SCET approach with those appearing in the CSS formulation in section VI, and show

the consistency of the methods through NLL. We discuss what further work must be done

to establish the relationship to higher orders. Numerical results for Higgs production and Z

boson production are shown in Section VII, and the agreement with the Tevatron data for

Z production is demonstrated. Finally, we conclude in Section VIII.

II. REVIEW OF THE FACTORIZATION THEOREM

We begin by summarizing the content and derivation of our previously-studied factoriza-

tion theorem [19], and present its extension to the case of electroweak gauge boson produc-

tion. The details of this extension are presented in appendix A. The derivation and result

of our factorization analysis are shown schematically below:

d2σ

dp2TdY
∼

∫
PS |MQCD|2 (1)

↓ (match QCD to SCETpT )

∼
∫

PS |C ⊗ 〈OSCET 〉|2

↓ (SCET soft-collinear decoupling)

∼ H ⊗ Bn ⊗ Bn̄ ⊗ S

↓ (zero-bin and soft subtraction equivalence)

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1

↓ (match SCETpT to SCETΛQCD)

∼ H ⊗
[
In ⊗ In̄ ⊗ S−1

]
︸ ︷︷ ︸

G

⊗fi ⊗ fj.

• In the first stage of the analysis, full QCD is matched onto an effective field theory

which contains fields with the following momentum scalings:

pn ∼ M(η2, 1, η), pn̄ ∼ M(1, η2, η), ps ∼ M(η, η, η), η ∼ pT
M

,

Transverse Momentum Spectrum 

• Observable of interest

CDF Data
for Z-production

• Higgs Boson searches
• W-mass measurement

• Tests of pQCD

Motivations
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mt, MW (1)

mb (2)

mc (3)

ms (4)

mu,d (5)

ΛQCD (6)

MW ! mµ (7)

mb ! ΛQCD (8)

γ∗, Z, W, h (9)

Sonny Mantry:

1. Implications of a Scalar Dark Force for Terrestrial Experiments(arXiv:0902.4461): A

long range Weak Equivalence Principle (WEP) violating force between Dark Matter

(DM) particles, mediated by an ultralight scalar, is tightly constrained by galactic

dynamics and large scale structure formation. We examine the implications of such

a ”dark force” for several terrestrial experiments, including Eotvos tests of the WEP,

direct-detection DM searches, and collider studies. The presence of a dark force implies

a non-vanishing effect in Eotvos tests that could be probed by current and future

experiments depending on the DM model. For scalar singlet DM scenarios, a dark

force of astrophysically relevant magnitude is ruled out in large regions of parameter

• Transverse nucleon structure

Restrict pT and Y



Low pT Region

• Resummation has also been studied recently using the EFT 
approach.

Large Logarithms spoil 
perturbative convergence

• Resummation has been studied in great detail in the Collins-
Soper-Sterman formalism.
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• The schematic perturbative series for the pT 
distribution for  
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pp→ h + X (1)

αs

π
(2)

I. INTRODUCTION

LSCET = L(0)
SCET + L(1)

SCET + L(2)
SCET + · · · (3)

L(0)
SCET = L(0)

coll. + L(0)
soft (4)

phc ∼ pc + ps ∼ Q(η2, 1, η) + Q(η, η, η) ∼ Q(η, 1, η) (5)

p2
hc ∼ Q2η # p2

c , p
2
s (6)

(Davies, Stirling; Arnold, Kauffman; Berger, Qiu; Ellis, Veseli, Ross, Webber; Brock, Ladinsky Landry, 
Nadolsky; Yuan; Fai, Zhang; Catani, Emilio, Trentadue; Hinchliffe, Novae; Florian, Grazzini, Cherdnikov, 

Stefanis; Belitsky, Ji,.... )

(Idilbi, Ji, Yuan; Gao, Li, Liu; SM, Petriello; Becher, Neubert)



Low pT Region

In the CSS resummation formalism, the differential cross section is written as the sum

dσAB→CX

dQ2 dy dQ2
T

=
dσ(resum)

AB→CX

dQ2 dy dQ2
T

+
dσ(Y)

AB→CX

dQ2 dy dQ2
T

. (2)

The all-orders resummed term is a Fourier transform from b-space

dσ(resum)
AB→CX

dQ2 dy dQ2
T

=
1

(2π)2

∫

d2b ei !QT ·!b WAB→CX(b, Q, xA, xB)

=
∫ db

2π
J0(QT b) bWAB→CX(b, Q, xA, xB), (3)

where J0 is a Bessel function. The function WAB→CX(b, Q, xA, xB) resums to all orders in

QCD perturbation theory the singular terms that would otherwise behave as δ2(QT ) and

(1/Q2
T ) lnm(Q2/Q2

T ), for all m ≥ 0. The variables xA and xB are light-cone momentum

fractions carried by the incident partons from hadrons A and B:

xA =
Q√
S

ey and xB =
Q√
S

e−y, (4)

and y is the rapidity of the heavy boson. The variables xA and xB do not depend on QT .

Resummation treats only the parts of the fixed-order QCD expression that are at least

as singular as Q−2
T in the limit QT → 0. The remainder, including possible less singular

pieces of the fixed-order perturbative contribution, is defined as the difference of the cross

section computed at fixed order n in perturbation theory and its QT $ Q asymptote that

is at least as singular as Q−2
T .

dσ(Y)
AB→CX

dQ2 dy dQ2
T

=
dσ(pert)

AB→CX

dQ2 dy dQ2
T

−
dσ(asym)

AB→CX

dQ2 dy dQ2
T

. (5)

This remainder is not significant quantitatively at modest QT , since the dominant singu-

larities of the two terms on the right-hand-side cancel in the region QT → 0. However,

the difference becomes important when QT ∼ Q. Explicit expressions for the fixed-order

remainder terms are presented in Sec. IV.

We may factor out the lowest order partonic cross section and rewrite the function

WAB→CX(b, Q, xA, xB) that appears in the integrand of Eq. (3) as

WAB→CX(b, Q, xA, xB) =
∑

ij

Wij(b, Q, xA, xB) σ(0)
ij→CX(Q). (6)

7

.

• The transverse momentum distribution in the CSS 
formalism is schematically given by:

boson production. We compare the predicted QT distributions for Higgs boson production

at different masses. The peak of the distribution shifts to greater QT as mh grows, in

approximately linear fashion, and the distribution broadens somewhat. The mean value

< QT > grows from about 35 GeV at mh = MZ to about 54 GeV at mh = 200 GeV, and

the root-mean-square grows from about 59 GeV to about 87 GeV. For Z production, we

find < QT >= 25 GeV and < Q2
T >1/2= 38 GeV. The harder QT spectrum suggests that

the signal to background ratio can be enhanced if Higgs bosons are selected with large QT .

Choices of variable parameters are made in obtaining our results, and we examine the

sensitivity of the results to these choices, including the renormalization/factorization scale

µ and the non-perturbative input. Scale dependence is the most important source of uncer-

tainty. It can shift the position of the peak by about 1 GeV, with corresponding changes in

the normalization of the distribution above and below the position of the peak. The value

of dσ/dydQT at the peak position is shifted by 4 to 5%. Changes in the parameters of the

non-perturbative input produce effects that at most 1 to 2% depending on the size of the

power corrections we introduce. In the formulation we use to describe the non-perturbative

region, there is essentially no effect on the behavior of differential cross section at large

QT . In comparison with prior work, we note that the locations of the maxima in the dis-

tributions dσ/dydQT occur at slightly larger values of QT in our case, and the distributions

themselves differ as a function of QT above the location of the maximum. The differences

arise from the different treatment of the non-perturbative input. In our approach, the as-

sumed parametrization of non-perturbative effects has the desirable property that it does

not affect the physics in the perturbative region b < 0.5 GeV.

Conclusions are summarized in Sec. VI.

II. ALL-ORDERS RESUMMED QT DISTRIBUTION

We consider the inclusive hadronic reaction in which a color neutral heavy boson of

invariant mass Q is produced:

A(PA) + B(PB) → C(Q) + X, (1)

with C = γ∗, W±, Z, or a Higgs boson in the limit in which the top quark mass mt " Q/2.

The square of the total center-of-mass energy of the collision is S. At the LHC,
√

S = 14 TeV.

6

boson production. We compare the predicted QT distributions for Higgs boson production

at different masses. The peak of the distribution shifts to greater QT as mh grows, in

approximately linear fashion, and the distribution broadens somewhat. The mean value

< QT > grows from about 35 GeV at mh = MZ to about 54 GeV at mh = 200 GeV, and

the root-mean-square grows from about 59 GeV to about 87 GeV. For Z production, we

find < QT >= 25 GeV and < Q2
T >1/2= 38 GeV. The harder QT spectrum suggests that

the signal to background ratio can be enhanced if Higgs bosons are selected with large QT .

Choices of variable parameters are made in obtaining our results, and we examine the

sensitivity of the results to these choices, including the renormalization/factorization scale

µ and the non-perturbative input. Scale dependence is the most important source of uncer-

tainty. It can shift the position of the peak by about 1 GeV, with corresponding changes in

the normalization of the distribution above and below the position of the peak. The value

of dσ/dydQT at the peak position is shifted by 4 to 5%. Changes in the parameters of the

non-perturbative input produce effects that at most 1 to 2% depending on the size of the

power corrections we introduce. In the formulation we use to describe the non-perturbative

region, there is essentially no effect on the behavior of differential cross section at large

QT . In comparison with prior work, we note that the locations of the maxima in the dis-

tributions dσ/dydQT occur at slightly larger values of QT in our case, and the distributions

themselves differ as a function of QT above the location of the maximum. The differences

arise from the different treatment of the non-perturbative input. In our approach, the as-

sumed parametrization of non-perturbative effects has the desirable property that it does

not affect the physics in the perturbative region b < 0.5 GeV.

Conclusions are summarized in Sec. VI.

II. ALL-ORDERS RESUMMED QT DISTRIBUTION

We consider the inclusive hadronic reaction in which a color neutral heavy boson of

invariant mass Q is produced:

A(PA) + B(PB) → C(Q) + X, (1)

with C = γ∗, W±, Z, or a Higgs boson in the limit in which the top quark mass mt " Q/2.

The square of the total center-of-mass energy of the collision is S. At the LHC,
√

S = 14 TeV.

6

,h,

Soft or collinear 
pT emission

Most singular 
contribution



In the CSS resummation formalism, the differential cross section is written as the sum
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• Treated with 
resummation.

• Singular as at least 
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theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

• Hierarchy of scales suggests EFT approach with well defined 
power counting.

pT=0 finite pT finite pT

26

negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.

,
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A. QCD to SCETpT

As already mentioned, the perturbative expansion in QCD for the transverse momentum

spectrum of the Higgs contains logarithms of mh/pT . In the low transverse momentum

region ΛQCD ! pT ! mh, these logarithms become large and must be resummed to all

orders in perturbation theory. In the effective theory formulation, this is done by matching

QCD onto the effective theory SCETpT , which describes the dynamics of the degrees of

freedom recoiling against the Higgs, and solving the RG equations of the effective theory

operators. The effective theory SCETpT is formulated in terms of collinear and soft modes

with momentum scalings

pn ∼ mh(η
2, 1, η), pn̄ ∼ mh(1, η

2, η), ps ∼ mh(η, η, η), η ∼ pT
mh

,

(15)

where pn, pn̄, and ps denote typical momenta for the n-collinear, n̄-collinear and soft modes

respectively. The effective theory has a well defined power counting in the parameter η

and has distinct quark and gluon fields for each of these modes. The gluon fields Aµ
n,p̃n(x),

Aµ
n̄,p̃n̄(x), and Aµ

s,q̃(x) destroy n-collinear, n̄-collinear, and soft gluons respectively. The pres-

ence of distinct collinear and soft gluons requires the theory to be invariant under collinear

and soft gauge transformations [38, 69]. The momenta of the effective theory modes are

separated into label p̃ and residual k parts

pµ = p̃µ + kµ, p̃µ ∼ mh(1, η), kµ ∼ mhη
2. (16)

Derivative operators are similarly separated into label and residual operators so that, for

example, a derivative acting on the n-collinear field takes the form

i∂µ → nµ

2
P̄ + Pµ

⊥ + i∂µ, (17)

such that the label operators act on the label momentum subscripts

P̄nA
µ
n,p̃n(x) = n̄ · p̃Aµ

n,p̃n(x), Pν
⊥A

µ
n,p̃n(x) = p̃ν⊥A

µ
n,p̃n(x), (18)

and the residual derivative operator acts on the residual co-ordinate dependence xµ. We note

that such a field with label momenta can be written explicitly as a Fourier transform of a

standard quantum field. As an example, a field with no dependence on residual coordinates

can be expressed as

Xp̃n(0) =

∫
dy

4π
e−iyp̃n/2 X(y). (19)

As already discussed, after integrating out the top quark, the gg → h process is mediated

by the effective QCD operator

OQCD = g2 h Tr
[
GµνG

µν
]
= −4v

c
Lmt , (20)
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –

Initial State jet
of pT radiation

pT=0 finite pT finite pT

• Colliding parton is part of initial state pT radiation beam jet:

(Stewart, Tackmann, Waalewijin; Fleming, Leibovich, Mehen)

• Soft recoil radiation is restricted. Gives rise to a soft function.

(SM,Petriello)



6

SCETpT

PDF

iBF

d

h

n

ms PDF

e uae

QCD (nf = 5)

et

iBF l fo

r T

iSF

a

FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

EFT framework
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parton distribution functions and partonic cross sections:

σPP→h =

∫
dx1dx2fg/P (x1, µ)fg/P (x1, µ)σ̂gg→h(ŝ, t̂, û, µ), (11)

where ŝ, t̂, and û are the usual partonic Mandelstam variables. For production of the Higgs

with non-zero pT , the differential partonic cross section is given by [68]

dσ̂

dt̂
=

π

384v2

(αs

π

)3
{
m8

h + ŝ4 + t̂4 + û4

ŝt̂û

}
. (12)

The total partonic cross section for gg → h through next-to-leading order in QCD pertur-

bation theory is [7, 9]

σ̂ =
π

576v2

(αs

π

)2
{
δ(1− z) +

αs

π

[
δ(1− z)

(
π2 +

11

2

)
− 11

2
(1− z)3

+ 6
(
1 + z4 + (1− z)4

)( ln(1− z)

1− z

)

+

}
, (13)

where z = m2
h/ŝ. This result assumes the scale choice µ2 = ŝ. The dependence of the

partonic cross section on the renormalization and factorization scales can be restored by

using the known renormalization group running of the cross section. The result is presented

in Ref. [9].

III. EFT FRAMEWORK

We derive a factorization theorem via a sequence of effective theories

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (14)

which factorize the physics associated with the different scales Q ∼ mh $ pT $ ΛQCD into

calculable perturbative functions and standard QCD PDFs. As we are assuming that the

mass of the Higgs is sufficiently small (mh < 2mt), we can integrate out the top quark in the

matching step QCD(nf = 6) → QCD(nf = 5) to obtain an effective coupling of the Higgs

boson to gluons. The cross sections obtained using this effective theory were described in

Sec. II. To derive a renormalization group equation allowing resummation of large logarithms

ln (mh/pT ) that appear at low transverse momenta, the matching to SCETpT is required.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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There have also been many other recent [41, 48–53, 53–57] developments in the application

of SCET to describe other processes at hadron colliders and is a promising avenue to pursue

in the LHC era.

Our paper is organized is follows. In Section II we review the calculation of Higgs produc-

tion through the gluon-fusion mechanism in perturbative QCD. We derive our factorization

formula in Section III. We discuss the factorization formula and compare to other results in

the literature in Section IV. In Section V we calculate the various quantities in fixed-order

perturbation theory, while Section VI is devoted to resummation of logarithms. We per-

form a series of consistency checks on our factorization formula including a comparison with

fixed-order perturbative QCD in Section VII. Finally, we conclude in Section VIII.

II. HIGGS PRODUCTION IN QCD

We begin by reviewing the gluon-initiated production of a Higgs boson in QCD. The

coupling of the Higgs boson to gluons arises primarily from a top-quark loop. For mh < 2mt,

we can integrate out the top quark to derive an effective coupling of the Higgs boson to

gluons [2, 5, 7, 9, 58]. The effective Lagrangian is given by

Lmt = CGGh
h

v
Ga

µ ν G
µ ν
a , CGGh =

αs

12π

{
1 +

11

4

αs

π
+O(α2

s)

}
, (5)

where CGGh, the Wilson coefficient in the MS scheme, is known through O(α4
s) [13, 59–62].

Calculations of the total cross section at higher orders in QCD perturbation theory using this

effective Lagrangian have been shown to reproduce the result of the full theory to percent-

level accuracy when mh < 2mt if the effective-theory cross section is normalized by the full

top-quark mass-dependent leading-order cross section [8, 63]. Additional corrections to the

transverse momentum spectrum of O(p2T/m
2
t ) are also present in the full theory. These affect

the low-pT region at the percent level, and have recently been studied in Refs. [64, 65]. An

effective field theory approach for studying such corrections at higher orders has recently

been developed [66, 67]. The scale µ at which the coupling constant is evaluated should be

chosen as µ ≈ mt to minimize logarithms that appear in the O(α3
s) expression for CGGh.

For notational ease we define

g2 c = −4CGGh (6)

and express later results using c.

The Higgs boson must recoil against at least one parton in order to have non-zero trans-

verse momentum. At leading-order in perturbative QCD, three partonic processes contribute

to Higgs production at non-zero pT : gg → hg, q(q̄)g → hq(q̄), and qq̄ → hg. We focus here

on the dominant process gg → hg. The diagrams contributing to this process are shown in

Fig. 2. We denote the incoming proton momenta as p1, p2, the outgoing parton momentum
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where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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B. Factorization in SCETpT : iBFs and the soft function

It is easier to work in terms of the hadronic Mandelstam variables u and t Mandelstam

instead of pT and Y , which correspond to the Higgs transverse momentum and rapidity

respectively. These two sets of variables are related by

u = (p2 − ph)
2 = m2 −Q

√
p2T +m2 eY ,

t = (p1 − ph)
2 = m2 −Q

√
p2T +m2 e−Y . (29)

The transformation between these sets of variables has a rather simple Jacobian given by

dudt = Q2 dp2TdY. (30)

Thus, a restriction on the u and t Mandelstam variables is equivalent to a restriction on the

pT and Y of the Higgs. The double differential cross-section in the Mandelstam variables

can be written in SCET as

d2σ

du dt
=

1

2Q2

[1
4

] ∫ d2ph⊥

(2π)2

∫
dn · phdn̄ · ph

2(2π)2
(2π)θ(n · ph + n̄ · ph)δ(n · phn̄ · ph − %p 2

h⊥
−m2

h)

× δ(u− (p2 − ph)
2)δ(t− (p1 − ph)

2)
∑

initial pols.

∑

X

∣∣C(ω1,ω2)⊗ 〈hXnXn̄Xs|O(ω1,ω2)|pp〉
∣∣2

× (2π)4δ(4)(p1 + p2 − PXn − PXn̄ − PXs − ph),

(31)

where O and C denote the SCETpT operator and the matching coefficient respectively. The

⊗ symbol denotes a convolution in the label momenta ω1,2 as in Eq. (27). Note that the

constraint delta functions δ(u − (p2 − ph)2) and δ(t − (p1 − ph)2) restrict the final states

to those that satisfy u = (p2 − ph)2 and t = (p1 − ph)2, or equivalently pick out the states

with the corresponding values of pT and Y . The states Xn, Xn̄, Xs correspond to final state

particles with the n-collinear, n̄-collinear and soft momentum scaling respectively. It is only

the states with such momentum scalings that will have a non-zero overlap with the SCETpT

operator O(ω1,ω2). The overall factor of 1/4 in square brackets in Eq. (31) is from the

average over the initial proton spins.

Using the fact that the soft and collinear modes are decoupled in the leading orderHard 
matching 
coefficient.

SCET matrix 
element.
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in
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SCETpT Lagrangian we arrive at the factorization formula

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dn · ph

∫
dn̄ · ph

∫
d2k⊥

h

∫
dk+

n d
2k⊥

n

∫
dk−

n̄ d
2k⊥

n̄

∫
d4ks

×
∫

dx−d2x⊥

2(2π)3

∫
dy−d2y⊥
2(2π)3

∫
d4z

(2π)4
e

i
2k

+
n x−−i!k⊥n ·x⊥e

i
2k

−
n̄ y+−i!k⊥n̄ ·y⊥eiks·z

× δ
(
u−m2

h +Qn̄ · ph
)
δ
(
t−m2

h +Qn · ph
)
δ
(
n̄ · phn · ph − $k 2

h⊥ −m2
h

)

×
∫

dω1dω2|C(ω1,ω2, µ)|2Jαβ
n (ω1, x

−, x⊥, µ) Jn̄αβ(ω2, y
+, y⊥, µ) S(z, µ)

× δ
(
ω1 − n̄ · ph − k−

n̄ − k−
s

)
δ(ω2 − p+h − k+

n − k+
s )δ

(2)(k⊥
s + k⊥

n + k⊥
n̄ + k⊥

h ),

(32)

where the jet and soft functions are defined as

Jαβ
n (ω1, x

−, x⊥, µ) =
∑

initial pols.

〈p1|
[
gBA

1n⊥β(x
−, x⊥)δ(P̄ − ω1)gB

A
1n⊥α(0)

]
|p1〉

Jαβ
n̄ (ω1, y

+, y⊥, µ) =
∑

initial pols.

〈p2|
[
gBA

1n⊥β(y
+, y⊥)δ(P̄ − ω2)gB

A
1n⊥α(0)

]
|p2〉

S(z, µ) = 〈0|T̄
[
Tr

(
Sn̄T

DS†
n̄SnT

CS†
n

)
(z)

]
T
[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉.
(33)

T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
dω1dω2

∫
db+db−d2b⊥

4(2π)4
e

i
2 (ω1−p−h )b+e

i
2 (ω2−p+h )b−

× e−i!k⊥h ·!b⊥δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

× |C(ω1,ω2, µ)|2Jαβ
n (ω1, b

−, b⊥, µ) Jn̄αβ(ω2, b
+, b⊥, µ) S(b

+, b−, b⊥, µ).

(34)

We recast this factorization theorem in terms of jet and soft functions that have momentum

space light cone coordinates as

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

] ∫
dω1dω2|C(ω1,ω2, µ)|2

×
∫

dk+
n dk

−
n̄ Bαβ

n (ω1, k
+
n , b⊥, µ) Bn̄αβ(ω2, k

−
n̄ , b⊥, µ) S(ω1 − p−h − k−

n̄ ,ω2 − p+h − k+
n , b⊥, µ),

(35)
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where the jet and soft functions are defined as

Jαβ
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T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that
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n (ω1, b
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+, b⊥, µ) S(b

+, b−, b⊥, µ).

(34)

We recast this factorization theorem in terms of jet and soft functions that have momentum

space light cone coordinates as

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
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−
h

∫
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∫
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e−i!k⊥h ·!b⊥

× δ
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h +Qp−h
]
δ
[
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]
δ
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p+h p

−
h − $k2

h⊥ −m2
h

] ∫
dω1dω2|C(ω1,ω2, µ)|2

×
∫

dk+
n dk

−
n̄ Bαβ

n (ω1, k
+
n , b⊥, µ) Bn̄αβ(ω2, k

−
n̄ , b⊥, µ) S(ω1 − p−h − k−

n̄ ,ω2 − p+h − k+
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(35)
Softbn-collinear 

iBF

n-collinear 
iBF

• Formula in detail:

• iBFs and soft functions field-theoretically defined as the 
fourier transform of:
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where we have defined the hybrid-fourier space jet and soft functions as

Bαβ
n (ω1, k

+
n , b⊥, µ) =

∫
db−

4π
e

i
2k

+
n b−Jαβ

n (ω1, b
−, b⊥, µ),

Bαβ
n̄ (ω2, k

−
n̄ , b⊥) =

∫
db+

4π
e

i
2k

−
n̄ b+Jαβ

n (ω2, b
+, b⊥, µ),

S(ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
e

i
2 ω̃1b+e

i
2 ω̃2b−S(b+, b−, b⊥, µ).

(36)

The hybrid jet functions Bαβ
n,n̄(ω, k

±, b⊥, µ) are similar to the functions that appeared in [40]

and more recently in [41], but differ because of their dependence on the impact parameter

b⊥ and because their perpendicular indices α, β are not contracted with each other. We will

refer to these functions as impact-parameter Beam Functions (iBFs) in analogy to the Beam

Functions of [41] which have b⊥ = 0. These iBFs are implicitly defined with a zero-bin [71]

subtraction in order to avoid double counting the soft region already present in the soft

function S(ω̃1, ω̃2, b⊥, µ). For clarity we will refer to the zero-bin subtracted iBF as a purely

collinear iBF. We will refer to the iBF defined without a zero-bin subtraction as the naive

iBF or simply the iBF when the context is clear. These purely collinear iBFs that appear in

the factorization theorem are in general gauge dependent quantities. This is seen from their

dependence on the impact parameter b⊥ != 0 which leads to a spatial separation between

the fields in the matrix element not connected by a Wilson line. However, this additional

gauge link can be placed at infinity along the light-cone, and it does not contribute in

covariant gauges where the gauge potential vanishes at infinity. The iBF is thus well-defined

in covariant gauges. This is similar to what occurs for transverse-momentum dependent

PDFs in QCD [44–47]. In light-cone gauge, this additional gauge link at infinity is required

due to the asymptotic behavior of the gauge potential. It is possible that Glauber modes

are responsible for building up this extra contribution in SCET [47]. We note that the

total convolution over the hard Wilson coefficient |C(ω1,ω2, µ)|2, the purely collinear iBFs,

and the soft function in Eq. (35) is just equal to the total perturbative cross-section for

gluon-initiated Higgs + multi-parton production and thus gauge independent as required.

C. Equivalence of zero-bin and soft subtractions

The purely collinear iBFs Bαβ
n,n̄(ω, k

±, b⊥, µ) defined with a zero-bin subtraction can be

written as

Bαβ
n,n̄(ω, k

±, b⊥, µ) = B̃αβ
n,n̄(ω, k

±, b⊥, µ)− Bαβ
{n0,n̄0}(ω, k

±, b⊥, µ) (37)

where B̃αβ
n,n̄(ω, k

±, b⊥, µ) is the naive iBF or simply the iBF defined without a zero-bin

subtraction. The functions Bαβ
{n0,n̄0}(ω, k

±, b⊥, µ) denote the zero-bin limit of the iBFs. It
“Naive” iBF Zero-bin iBFPurely Collinear iBF

• Zero-bin iBF reproduces soft graphs. This is the equivalence of 
zero-bin and soft subtractions in SCET. (Stewart, Hoang; Lee, Sterman; Idilbi, 
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∼
∫

PS |C ⊗ 〈O〉|2 (1)

sums logs of mh/pT
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∼ H ⊗ Gij ⊗ fi ⊗ fj (2)

d2σ

dp2
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∼ H ⊗Bn ⊗Bn̄ ⊗ S (3)

130 GeV < mh < 180 GeV (4)

pp → h + X (5)

αs

π
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Zero-bin Subtraction in 
order to avoid double 
counting the soft region.

Equivalent to soft graphs

(Manohar, Stewart)



Factorization in SCET
6

SCETpT

PDF

iBF

d

h

n

ms PDF

e uae

QCD (nf = 5)

et

iBF l fo

r T

iSF

a

FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

Hard function Impact-parameter Beam 
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(iBFs)

Inverse soft 
function
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Physics of hard scale. 
Sums logs of mh/pT.

Describes collinear 
pT emissions
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pT emissions
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

µΛ µB µHchanging x changing t

(a)

!−

Soft

Soft

!+

Pa Pb

Jet b Jet a

(b)

Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –

Analogous factors and soft-subtractions also 
appear in TMD-factorization formalism:

Drell-Yan, SIDIS

(J.C.Collins, F. Hautmann; X.-d.Ji, 
J.P.Ma,  F. Yuan;  Belitsky;  Aybat, 

Rogers,...)
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ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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where O and C denote the SCETpT operator and the matching coefficient respectively. The

⊗ symbol denotes a convolution in the label momenta ω1,2 as in Eq. (27). Note that the

constraint delta functions δ(u − (p2 − ph)2) and δ(t − (p1 − ph)2) restrict the final states

to those that satisfy u = (p2 − ph)2 and t = (p1 − ph)2, or equivalently pick out the states

with the corresponding values of pT and Y . The states Xn, Xn̄, Xs correspond to final state

particles with the n-collinear, n̄-collinear and soft momentum scaling respectively. It is only

the states with such momentum scalings that will have a non-zero overlap with the SCETpT

operator O(ω1,ω2). The overall factor of 1/4 in square brackets in Eq. (31) is from the

average over the initial proton spins.

Using the fact that the soft and collinear modes are decoupled in the leading order

SCETpT Lagrangian we arrive at the factorization formula

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dn · ph

∫
dn̄ · ph

∫
d2k⊥

h

∫
dk+

n d
2k⊥

n

∫
dk−

n̄ d
2k⊥

n̄

∫
d4ks

×
∫

dx−d2x⊥

2(2π)3

∫
dy−d2y⊥
2(2π)3

∫
d4z

(2π)4
e

i
2k

+
n x−−i!k⊥n ·x⊥e

i
2k

−
n̄ y+−i!k⊥n̄ ·y⊥eiks·z

× δ
(
u−m2

h +Qn̄ · ph
)
δ
(
t−m2

h +Qn · ph
)
δ
(
n̄ · phn · ph − %k 2

h⊥ −m2
h

)

×
∫

dω1dω2|C(ω1,ω2, µ)|2Jαβ
n (ω1, x

−, x⊥, µ) Jn̄αβ(ω2, y
+, y⊥, µ) S(z, µ)

× δ
(
ω1 − n̄ · ph − k−

n̄ − k−
s

)
δ(ω2 − p+h − k+

n − k+
s )δ

(2)(k⊥
s + k⊥

n + k⊥
n̄ + k⊥

h ),

(32)

where the jet and soft functions are defined as

Jαβ
n (ω1, x

−, x⊥, µ) =
∑

initial pols.

〈p1|
[
gBA

1n⊥β(x
−, x⊥)δ(P̄ − ω1)gB

A
1n⊥α(0)

]
|p1〉

Jαβ
n̄ (ω1, y

+, y⊥, µ) =
∑

initial pols.

〈p2|
[
gBA

1n⊥β(y
+, y⊥)δ(P̄ − ω2)gB

A
1n⊥α(0)

]
|p2〉

S(z, µ) = 〈0|T̄
[
Tr

(
Sn̄T

DS†
n̄SnT

CS†
n

)
(z)

]
T
[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉.
(33)

T is the time-ordering symbol, and T̄ denotes anti-time ordering. Details of the derivation

of this formula are given in appendix A. The above factorization theorem can be brought

into a more concise form involving a simpler convolution structure so that

d2σ

du dt
=

(2π)

(N2
c − 1)28Q2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
dω1dω2

∫
db+db−d2b⊥

4(2π)4
e

i
2 (ω1−p−h )b+e

i
2 (ω2−p+h )b−

× e−i!k⊥h ·!b⊥δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − %k2

h⊥ −m2
h

]

× |C(ω1,ω2, µ)|2Jαβ
n (ω1, b

−, b⊥, µ) Jn̄αβ(ω2, b
+, b⊥, µ) S(b

+, b−, b⊥, µ).

(34)

Residual light-cone momenta
regulate spurious rapidity

divergences.

• iBFs and iSF are regulated by kinematics of the process and 
free of rapidity divergences. 

• iBFs are fully unintegrated nucleon distributions instead of 
TMD pdfs. 
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

20

contributions from the matching coefficientsH(Q̂2, µQ) and Gij: γV (2) = B(2)+ contributions

fromH(Q̂2, µQ), Gij. This has been observed in previous analyses comparing SCET evolution

to the QCD literature [18, 31]. A two-loop computation of Gij is required to further check the

relation between the CSS and effective theory approaches; this calculation is an important

goal for future work. By design, both approaches fully reproduce the low-pT limit of fixed-

order result upon expansion in αS. A check of the NLO pT spectrum would also require a

two-loop computation of Gqrs.

However, note that in the SCET approach, the low scale endpoint of the RG evolution

of the Sudakov factor is at µT ∼ pT . This differs from the standard approach where the

corresponding endpoint is at µ ∼ 1/b⊥ where b⊥ is the impact parameter that is integrated

over from zero to infinity. The limit of b⊥ → ∞ gives rise to a Landau pole that must be

dealt with by introducing an external prescription for any value of pT . The SCET approach

avoids this issue as the RG evolution is done entirely in momentum space.

A well-known aspect of the CSS approach is its treatment of the limit pT → 0, M → ∞.

It predicts that in this limit dσ/dp2T goes like a power [4] of ΛQCD/Q̂ and is thus sensitive to

non-perturbative input. In the effective field theory approach this corresponds to the region

where the TMF is no longer perturbative. The leading 1/p2T term coming from perturbative

soft and collinear gluons is strongly Sudakov-suppressed by the evolution due to the cusp

anomalous dimension in this limit. The remaining contribution then comes from the non-

perturbative region in the effective theory whose analysis remains to be done.

We also note that in our formalism, the factorization theorem is in terms of iBFs and

the iSF which differ from the corresponding objects in the TMD factorization formalism

[37–46]. The iBFs and iSF depend on additional light-cone residual momentum components

which regulate rapidity divergences as dictated by the physical kinematics of the process

at finite pT . This allows one to compute in perturbation theory the iBFs and iSF in pure

dimensional regularization without the need for additional external regulators as in the TMD

factorization approach. One can obtain a factorization formula in SCET analogous to the

TMD factorization by expanding in these residual light cone momenta to get [17]

d2σ

du dt
=

∑

qijKL

πFKL;q

4Q4N2
c

∫
d2k⊥

∫
d2b⊥
(2π)2

ei
!b⊥·!k⊥δ

[
ωuωt − 'k2

⊥ −M2
z

]
HKL;ijq

Z (ωu,ωt, µQ;µT )

× Jq
n(ωu, 0, b⊥, µT )J

q̄
n̄(ωt, 0, b⊥, µT )Sqq(0, 0, b⊥, µT ), (64)

where ωu = M2
z−u
Q ,ωt =

M2
z−t
Q . The SCET objects Jq

n, J
q̄
n̄, and Sqq contain spurious rapid-

ity divergences that require additional regulators beyond dimensional regularization. For

perturbative values of pT , a matching calculation can be performed to write the above for-

mula in terms of standard PDFs. A more detailed comparison of our approach to the TMD

factorization formalism is left for future work.
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perturbative values of pT , a matching calculation can be performed to write the above for-
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• SCET version of formula with TMDPDFs

• SCET formula with Impact Parameter Beam functions:

Soft function

• Field-theoretic operator definitions for TMDPDFs and Soft 
function exist also in the traditional TMD formulation: 
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IV. DEFINITIONS OF THE TMDS

As explained in Sect. II, our calculations are based on
the formulation of TMD-factorization explained in detail
in Ref. [26]. A repeat of the derivation is beyond the
scope of this paper. However, in order to put our later
calculations into their proper context, we will give an
overview of the basic features of the formalism in this
and the next section. We refer the reader directly to
Ref. [26] for pertinent details.

A. Soft Factor Definition

We have already stressed in Sect. II C that the defini-
tions of the TMDs in Eq. (7) are not the often quoted ma-

trix elements of the form ∼ 〈P |ψ̄ WilsonLine ψ|P 〉 with
simple light-like Wilson lines connecting the field oper-
ators. Using such definitions in a factorization formula
leads to inconsistencies, including unregulated light-cone
divergences. Also, soft gluons with rapidity intermedi-
ate between the two nearly light-like directions need to
be accounted for in the form of soft factors. Therefore,
before we can discuss the definitions of the TMDs that
will ultimately be used in Eq. (7), we must provide the
precise definition of the soft factor. In coordinate space
it is an expectation value of a Wilson loop:

S̃(0)(bT ; yA, yB) =
1

Nc
〈0|W (bT/2,∞;nB)

†
ca W (bT /2,∞;nA)adW (−bT/2,∞;nB)bcW (−bT/2,∞;nA)

†
db|0〉No S.I..

(8)

We have used the vectors in Eq. (6) to define the direc-
tions of the Wilson lines so that, as long as yA and yB
are finite, the Wilson lines in Eq. (8) are non-light-like.
The subscripts a, b, c and d are color triplet indices, and
repeated indices are summed over. The “(0)” subscript
indicates that bare fields are used. The soft factor con-
tains Wilson line self-interaction (S.I.) divergences that
are very badly divergent and are unrelated to the orig-
inal unfactorized graphs. They must therefore be ex-
cluded, and we indicate this with a subscript “No S.I.”.
We emphasize, however, that this is only a temporary
requirement because all Wilson line self-energy contribu-
tions will cancel in the final definitions. Another poten-
tial complication, pointed out in Refs. [19, 20], is that
exact gauge invariance requires the Wilson lines to be
closed by the insertion of links at light-cone infinity in the
transverse direction. However, the transverse segments
will not contribute in the final definitions of the TMDs
(at least in non-singular gauges), so we do not show them
explicitly in Eq. (8). Again, the final arrangement of soft

factors will ensure a cancellation.

Rather than appearing as a separate factor in the
TMD-factorization formula, soft factors like Eq. (8) will
be part of the final definitions of the TMDs. Their role
in the definitions will be essential for the internal consis-
tency of the TMDs and their validity in a factorization
formula like Eq. (7).

B. TMD PDF and FF Definitions

Now we turn to the definitions of the TMDs them-
selves, starting with the unpolarized TMD PDF. The
most natural first attempt at an operator definition is
obtained simply by direct extension of the collinear inte-
grated parton distribution, though with the Wilson line
tilted to avoid light-cone singularities. The operator def-
inition is

F̃ unsub
f/P (x,bT ;µ; yP − yB)

= TrC

∫
dw−

2π
e−ixP+w−

〈P |ψ̄f (w/2)W (w/2,∞, nB)
† γ

+

2
W (−w/2,∞, nB)ψf (−w/2)|P 〉c,No S.I.. (9)

This definition does not account for the overlap of the
soft and collinear regions, so we refer to it as the “un-

subtracted” TMD PDF. Here w = (0, w−,bT ) and yP is
the physical rapidity of the hadron. As usual, the struck
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IV. DEFINITIONS OF THE TMDS

As explained in Sect. II, our calculations are based on
the formulation of TMD-factorization explained in detail
in Ref. [26]. A repeat of the derivation is beyond the
scope of this paper. However, in order to put our later
calculations into their proper context, we will give an
overview of the basic features of the formalism in this
and the next section. We refer the reader directly to
Ref. [26] for pertinent details.

A. Soft Factor Definition

We have already stressed in Sect. II C that the defini-
tions of the TMDs in Eq. (7) are not the often quoted ma-

trix elements of the form ∼ 〈P |ψ̄ WilsonLine ψ|P 〉 with
simple light-like Wilson lines connecting the field oper-
ators. Using such definitions in a factorization formula
leads to inconsistencies, including unregulated light-cone
divergences. Also, soft gluons with rapidity intermedi-
ate between the two nearly light-like directions need to
be accounted for in the form of soft factors. Therefore,
before we can discuss the definitions of the TMDs that
will ultimately be used in Eq. (7), we must provide the
precise definition of the soft factor. In coordinate space
it is an expectation value of a Wilson loop:

S̃(0)(bT ; yA, yB) =
1

Nc
〈0|W (bT/2,∞;nB)

†
ca W (bT /2,∞;nA)adW (−bT/2,∞;nB)bcW (−bT/2,∞;nA)

†
db|0〉No S.I..

(8)

We have used the vectors in Eq. (6) to define the direc-
tions of the Wilson lines so that, as long as yA and yB
are finite, the Wilson lines in Eq. (8) are non-light-like.
The subscripts a, b, c and d are color triplet indices, and
repeated indices are summed over. The “(0)” subscript
indicates that bare fields are used. The soft factor con-
tains Wilson line self-interaction (S.I.) divergences that
are very badly divergent and are unrelated to the orig-
inal unfactorized graphs. They must therefore be ex-
cluded, and we indicate this with a subscript “No S.I.”.
We emphasize, however, that this is only a temporary
requirement because all Wilson line self-energy contribu-
tions will cancel in the final definitions. Another poten-
tial complication, pointed out in Refs. [19, 20], is that
exact gauge invariance requires the Wilson lines to be
closed by the insertion of links at light-cone infinity in the
transverse direction. However, the transverse segments
will not contribute in the final definitions of the TMDs
(at least in non-singular gauges), so we do not show them
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factors will ensure a cancellation.

Rather than appearing as a separate factor in the
TMD-factorization formula, soft factors like Eq. (8) will
be part of the final definitions of the TMDs. Their role
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tency of the TMDs and their validity in a factorization
formula like Eq. (7).

B. TMD PDF and FF Definitions

Now we turn to the definitions of the TMDs them-
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most natural first attempt at an operator definition is
obtained simply by direct extension of the collinear inte-
grated parton distribution, though with the Wilson line
tilted to avoid light-cone singularities. The operator def-
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= TrC

∫
dw−

2π
e−ixP+w−

〈P |ψ̄f (w/2)W (w/2,∞, nB)
† γ

+

2
W (−w/2,∞, nB)ψf (−w/2)|P 〉c,No S.I.. (9)

This definition does not account for the overlap of the
soft and collinear regions, so we refer to it as the “un-

subtracted” TMD PDF. Here w = (0, w−,bT ) and yP is
the physical rapidity of the hadron. As usual, the struck

TMDPDF:

Soft function:

(Soft function and operator definitions absent in 
Becher-Neubert formula) 

(Collins;  Aybat, Rogers)

(Gao, Li, Liu)
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here

iBFs are proton matrix elements
and sensitive to the 

non-perturbative scale

• The iBFs are matched onto PDFs to separate the perturbative 
and non-perturbative scales:

PDFiBF Matching
coefficient
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

µΛ µB µHchanging x changing t

(a)

!−

Soft

Soft

!+

Pa Pb

Jet b Jet a

(b)

Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –
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∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

B̃n = In,i ⊗ fi, B̃n̄ = In̄,j ⊗ fj (2)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (3)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming
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FIG. 1: Structure of the factorization theorem. The QCD (nf = 5) theory obtained after integrat-
ing out the top is matched onto SCETpT at the µ ∼ mh scale followed by RG running down to
the µ ∼ pT scale summing logarithms in mh/pT in the process. Using the soft-collinear decoupling
property of the leading order SCETpT Lagrangian, the cross-section is factorized into a n-collinear
iBF(Impact-parameter Beam Function), a n̄-collinear iBF, and an iSF(Inverse Soft Function). The
iBFs are then matched onto the standard QCD PDFs at the µ ∼ pT scale and the logarithms of
ΛQCD/pT are summed via the DGLAP equations which determine the PDFs at the µ ∼ pT scale.

zero-bin subtraction terms required to avoid double counting soft emissions that are

already contained in the soft function. However, the equivalence of zero-bin and soft

subtractions allow us to rewrite the factorization in terms of the standard QCD PDFs.

4. We give expressions for the factorization formula in both impact-parameter space (b-

space) and momentum space and discuss how they are related. The factorization can

be formulated entirely in momentum space; see Eqs.(1), (53), and (52). However, the

matching coefficients Iαβ
n;gi and Iαβ

n̄;gi are obtained by matching the iBFs in b-space onto

the standard QCD PDFs. It is only the b-space iBFs that manifestly have the same

infrared structure as the standard QCD PDFs. The momentum space iBFs do not

have this property. However, once this is done we can rewrite the factorization theo-

rem in momentum space in terms of Fourier-transformed momentum space matching

coefficients.

5. The iBFs B̃αβ
n,n̄(x, t, b⊥, µ) that appear in the SCETpT factorization theorem in Eq.(4)

are extensions of the beam functions introduced recently in [40, 41]. The additional

functional dependence on b⊥ found here is required to facilitate resummation of the

low pT region, and our functions reduce to those studied previously for b⊥ = 0.

6. The iBFs are similar to transverse-momentum dependent PDFs studied previously in

We are here
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so that the factorization theorem takes the form

d2σ

du dt
=

(2π)

8(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ
[
u−m2

h +Qp−h
]
δ
[
t−m2

h +Qp+h
]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ).

(41)

We have defined

B̃αβ
n (x1, t

+
n , b⊥, µ) ≡ 1

Q
B̃αβ

n (x1, k
+
n , b⊥, µ),

B̃αβ
n̄ (x2, t

−
n̄ , b⊥, µ) ≡ 1

Q
B̃αβ

n̄ (x2, k
−
n̄ , b⊥, µ),

H(x1x2Q
2, µ) ≡ |C(x1x2Q

2, µ)|2,
(42)

and H(x1x2Q2, µQ;µT ) denotes the result of RG evolving the function H(x1x2Q2, µ) from

the scale µQ ∼ Q ∼ mh to the scale µ ∼ pT . The choice of the scale µT ∼ pT will

become manifest once we perform the Higgs phase space integrals and rewrite the u and

t Mandelstam variables in terms of pT and Y. We will do this in the next section. The

RG evolved H(x1x2Q2, µQ;µT ) hard function sums up logarithms of mh/pT . The iBFs are

proton matrix elements and will give rise to logarithms of ΛQCD/pT in the perturbative

cross-section that must be resummed. For this reason, as discussed in the next section, the

iBFs will be matched onto PDFs and the logarithms of ΛQCD/pT will be resummed via the

standard DGLAP evolution equations.

D. iBFs to PDFs

The matching of the iBF onto the PDF is given by

B̃αβ
n (z, t+n , b⊥, µ) = −1

z

∑

i=g,q,q̄

∫ 1

z

dz′

z′
Iαβ
n;g,i(

z

z′
, t+n , b⊥, µ)fi/P (z

′, µ), (43)

where Iαβ
g,i (

z
z′ , t

+
n , b⊥, µ) is the matching coefficient and the gluon pdf is defined as

fg/P (z, µ) =
−zn̄ · p1

2

∑

spins

〈p1|
[
Tr{Bµ

⊥(0)δ(P̄ − z n̄ · p1)B⊥µ(0)}
]
|p1〉, (44)

so that the leading order perturbative expression is normalized as

f (0)
g/P (x) = δ(1− x). (45)

• iBF is matched onto the PDF with matching coefficient defined as: 

µΛ µB µHchanging x changing t

(a)

!−

Soft
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Jet b Jet a

(b)

Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton
is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final
state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming
jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the
hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γiB(t− t′, µ)Bi(t

′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t # Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → X#+#−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold
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we arrive at the result

S2 = −N2
c − 1

4

αsCA

π
Q2 δ(tmax

n̄ − t−n̄ )δ(t
max
n − t+n ),

S1 =
N2

c − 1

4

αsCA

π
Q2

{
δ(tmax

n̄ − t−n̄ )
1

Q2

[
Q2

tmax
n − t+n

]

+

+ δ(tmax
n − t+n )

1

Q2

[
Q2

tmax
n̄ − t−n̄

]

+

+ δ(tmax
n̄ − t−n̄ )δ(t

max
n − t+n ) ln

Q2

µ2

}
,

S0 = −N2
c − 1

4

αsCA

π
Q2

{
−π2

12
δ(tmax

n̄ − t−n̄ )δ(t
max
n − t+n ) +

1

2
δ(tmax

n̄ − t−n̄ )δ(t
max
n − t+n )ln

2Q
2

µ2

+ δ(tmax
n̄ − t−n̄ )

1

Q2

[
Q2

tmax
n − t+n

]

+

ln
Q2

µ2
+ δ(tmax

n − t+n )
1

Q2

[
Q2

tmax
n̄ − t−n̄

]

+

ln
Q2

µ2

+ δ(tmax
n̄ − t−n̄ )

1

Q2

[
Q2

tmax
n − t+n

ln
tmax
n − t+n

Q2

]

+

+ δ(tmax
n − t+n )

1

Q2

[
Q2

tmax
n̄ − t−n̄

ln
tmax
n̄ − t−n̄

Q2

]

+

+
1

Q4

[
Q2

tmax
n − t+n

]

+

[
Q2

tmax
n̄ − t−n̄

]

+
0F1

(
1;−b2⊥(t

max
n − t+n )(t

max
n̄ − t−n̄ )

4Q2

)}
. (85)

We have used the scale Q to define dimensionless ratios in logarithms and plus distributions,

as in the calculation of the iBF. We note that when this result is plugged into the full

expression for Gij in Eq. (49), the logarithm that appears is ln
[
t̂û/(µ2Q̂2)

]
, where t̂, û are

the partonic Mandelstam variables. This indicates that we should choose µ ∼ pT in the soft

function, and is the motivation for our decision to set µS = µT in Section IV.

D. iBFs to PDFs

In order to be able to sensibly match the iBFs onto the PDFs with a finite Wilson

coefficient, as indicated in Eq. (43), the infrared divergences in the iBF and PDF must

match. In this section, we show that this can be manifestly seen from the integrand level

expressions for the iBF and PDF at the order we are working. We first note that the tree

level expression for the iBF to PDF matching is given by

I(0)βα
n;g,i (

z

z′
, t+n , b⊥, µ) = g2gαβ⊥ δ(t+n )δ(1−

z

z′
), (86)

which can be straightforwardly verified from Eq. (43). Next we consider the integrand-

level expression for the real gluon emission contribution to the iBF in Eq. (64) where the

integrals over the light cone momentum components of the final state gluon have already

been performed. The infrared divergences now occur in the limit where the perpendicular

momentum of the final state gluon vanishes pg⊥ → 0. In this limit, the iBF real-emission

contribution in Eq. (64) becomes

[
BR(1)αβ

n (x1, t
+
n , b⊥, µ)

]
IR

= −gαβ⊥ δ(t+n )
2g4µ2εCA

(2π)d−1

∫
d2−2εpg⊥

$p 2
g⊥

{
1− x1 +

1

1− x1
+

1− x1

x2
1

}
.

(87)

• Tree level matching
Proton fragments into
pT radiation beam jet

• Finite part of iBF in dim-reg gives 
matching coefficient at higher 
orders.
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In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by
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in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

Hard function. Transverse momentum 
function.

PDFs.

• The transverse momentum function is a convolution of the iBF 
matching coefficients and the soft function:

• Factorization formula in full detail:

Collinear pT emissions

Soft pT emissions
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

25

FIG. 3: The SCET diagrams contributing to the calculation of the Wilson coefficient C(ω1,ω2, µ).
The purple cross denotes the n and n̄ collinear Wilson lines and the soft Wilson lines, while gluons
with lines drawn through them are collinear gluons as the n and n̄ labels indicate. The S label
denotes a soft gluon in the first diagram.

A. Calculation of the QCD → SCETpT Wilson coefficient

We begin by discussing the matching of QCD onto SCETpT in order to extract the Wilson

coefficient C(ω1,ω2, µ). The Wilson coefficient can be extracted from the relation presented

in Eq. (27) by computing radiative corrections to the matrix elements of both the QCD and

SCET operators and encode their difference in C(ω1,ω2). For the tree level and one loop

matching one can compute the matrix elements 〈h|OQCD|p̂1, p̂2〉 and 〈h|O|p̂1, p̂2〉 in QCD

and SCETpT respectively where p̂1
µ = n̄ · p̂1 n

µ

2 and p̂µ2 = n · p̂2 n̄
µ

2 denote the momenta of the

initial state n-collinear and n̄-collinear gluons. The diagrams contributing at next-to-leading

order in αs in SCETpT are shown in Fig. 3. Labeling these graphs from left to right they

take the form

Fig. 3a = Va(p̂1, p̂2)O(n̄ · p̂1, n · p̂2),
Fig. 3b = [Vb(p̂1)− Vb0(p̂1)]O(n̄ · p̂1, n · p̂2),
Fig. 3c = [Vb(p̂2)− Vb0(p̂2)]O(n̄ · p̂1, n · p̂2), (56)

so that the SCETpT operator is multiplicatively renormalized. With on-shell external gluons

and using Feynman gauge, the quantities Va,b,b0 take the form

Va(p̂1, p̂2) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # ,

Vb(p̂1) = (−ig2CA)

∫
dd#

(2π)d
(n̄ · #)2 + (n̄ · p̂1)2 + n̄ · # n̄ · p̂1

#2(#+ p̂1)2n̄ · (#+ p̂1)n̄ · # ,

Vb0(p̂1) = (−ig2CA)

∫
dd#

(2π)d
2

#2 n · # n̄ · # . (57)

We note that the collinear graphs in Figs. 3b and 3c require a zero-bin [71] subtraction

given by the Vb0 term in order to avoid over-counting the soft region. These integrals are all

One loop SCET graphs

12

where Lmt is given in Eq. (5). In SCETpT , the leading order operator that mediates this

process is [15, 42]

O(ω1,ω2) = gµνh T{Tr
[
Sn(gB

µ
n⊥)ω1S

†
nSn̄(gB

ν
n̄⊥)ω2S

†
n̄

]
}, (21)

where we have suppressed the perp labels on the soft and collinear fields, the sum of which are

constrained to be the negative of the Higgs transverse momentum, and we use the standard

notation

(X)ω ≡ Xδ(ω − P̄†), (22)

and the big brackets in Eq. (21) denote the fact that any label operators appearing inside

do not act outside the brackets. The B field is defined as [70]

Bµ
n⊥ ≡

[
1

P̄n
[i n̄ · Dn, iD⊥µ

n ]

]
, (23)

and the soft Wilson line Sn in position space is given by

Sn(x
µ) = P exp

(
igs

∫ 0

∞
ds n · Aa

s(x
µ + snµ)

)
, (24)

with an analogous expression for Sn̄. The covariant derivatives are dressed with momentum

space Wilson lines so that

Dµ
n ≡ W †

n D
µ
n Wn, Wn(x) =

[ ∑

perms

Exp
(−g

P̄
n̄ · An,q

)]
, (25)

and Dµ
n are the usual covariant derivatives

in̄ ·Dn = P̄n + gn̄ · An,p̃, iD⊥µ
n = Pµ

n⊥ + gA⊥µ
n,p̃, in ·Dn = in · ∂ + gn · An,p. (26)

We match the QCD operator onto the the effective SCETpT operator via

OQCD =

∫
dω1

∫
dω2 C(ω1,ω2)O(ω1,ω2), (27)

and determine the Wilson coefficient by computing the gg → h process on the LHS in QCD

and on the right side in SCETpT . At tree level the Wilson coefficient is

C(0)(ω1,ω2) =
c ω1ω2

v
. (28)

The process gg → gh where the transverse momentum of the Higgs is of order mhη ∼ pT is

mediated through an extra soft or collinear emission from the Wilson lines in O(ω1,ω2).

For convenience, in deriving the factorization theorem, we will work with soft fields that

are in position space and collinear fields that are in position space conjugate to the transverse

label momentum so that no label momenta of the transverse momentum appear in the soft

and collinear fields. This amounts to not separating from momentum components of order

mhη a residual part of order mhη2. The separation into label and residual components is

employed only for the hard light cone collinear momentum components of order mh.

All graphs scaless and 
vanish in dimensional  
regularization.

(Harlander,Kilgore;Anastasiou,Melnikov;Ravindran,Smith,Van Neerven; Ahrens, Becher, Neubert, Yang;)
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

• NLO hard Wilson coefficient:

• NNLO results known.
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree
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FIG. 4: The diagrams contributing to the next-to-leading order jet function. The purple cross
denotes the collinear Wilson lines associated with the B⊥ field. We note that the momentum p1 is
incoming on the left-hand side of the cut and outgoing on the right.

scaleless and vanish in dimensional regularization. The Wilson coefficient can therefore be

extracted directly from the finite part of the full QCD result in dimensional regularization

and is well known in the literature [15, 79]. Through next-to-leading order, it is given by

C(n̄ · p̂1n · p̂2, µ) =
c n̄ · p̂1n · p̂2

v

{
1 +

αs

4π
CA

[
11

2
+

π2

6
− ln2

(
− n̄ · p̂1n · p̂2

µ2

)]}
, (58)

where the first term is just the result of tree level matching quoted earlier in Eq. (28) and

we have used the property C(ω1,ω2, µ) = C(ω1ω2, µ) to write the LHS above. We note that

the 11/2 in the next-to-leading order expression arises from integrating out the top quark

loop to produce an effective Higgs-glue vertex. The hard Wilson coefficient H(x1x2Q2, µ) =

|C(x1x2Q2, µ)|2 appearing in the factorization theorem can be obtained from the above

equation at next-to-leading order.

B. Calculation of the iBF

In this section we present results for the calculation of the iBFs as defined in Eqs. (36),

(33), and (42). We compute the n-collinear iBF by inserting a complete set of states as

B̃αβ
n (x1, t

+
n , b⊥, µ) =

∫
db−

4π
e

i
2

t+n b−
Q

∑

initial pols.

∑

Xn

〈p1|
[
gBA

1n⊥β(b
−, b⊥)|Xn〉

× 〈Xn|δ(P̄ − x1n̄ · p1)gBA
1n⊥α(0)

]
|p1〉,

(59)

and then computing the product of matrix elements. Recall that B̃αβ
n denotes the iBF

without a zero-bin subtraction as opposed to Bαβ
n which is defined with a zero-bin subtrac-

tion. An analogous expression exists for the n̄-collinear iBF. In this section we focus on the

n-collinear iBF, since the n̄-collinear iBF can be calculated in an analogous fashion. The

lowest order result for the iBF is obtained by choosing |Xn〉 = |0〉 and computing the tree

• Field-theoretic operator definition:

• NLO result known.
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

“unintegrated Beam Function” “unintegrated PDF”
(perturbative region) (non-perturbative region)

(SM, Petriello)
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FIG. 5: Example diagrams contributing to the next-to-leading order iSF. The four lines at each
vertex schematically denote the soft Wilson lines associated appearing in the definition of the iSF
S−1. The diagram on the left corresponds to a virtual correction to the iSF and the diagram on
the right corresponds to a real emission as seen by the cut through the gluon.

where Is is the scaleless integral

Is = 2

∫
dd!

(2π)d
1

(!2 + i0) (n̄ · !− i0) (n · !+ i0)
, (81)

and vanishes in pure dimensional regularization.

Next we compute the contribution to the iSF from the real emission of an soft gluon

corresponding to choosing |Xs〉 = |k〉 for a gluon of momentum k, as shown in the second

diagram of Fig. 5. Explicit computation gives

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −SR(1)(ω̃1, ω̃2, b⊥, µ)

= −N2
c − 1

4

g2µ2εCA

(2π)d−1

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2

∫
ddk δ(k2)

4

k+k− e
−ib·k.

(82)

Switching to an MS definition of µ and performing integrals as before, we can derive the

following expression:

S−1R(1)(ω̃1, ω̃2, b⊥, µ) = −N2
c − 1

4

αsCA

π

eεγ

Γ(1− ε)
µ2εω̃−1−ε

1 ω̃−1−ε
2 0F1

(
1− ε;−b2⊥ω̃1ω̃2

4

)
.

(83)

The expansion in ε proceeds identically to that for the iBF. Defining the expansion

S−1R(1)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

S2

ε2
+

S1

ε
+ S0, (84)

• Field-theoretic operator definition in position space:

30

C. Soft function: real emission

In this section we give results for the computation of the iSF which was defined earlier as

S−1(ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2S−1(b+, b−, b⊥), (75)

where the position space soft function that appears on the RHS above is defined in Eq. (33).

The iSF in the factorization theorem, before doing the Higgs phase space integrals, has the

arguments

ω̃1 = ω1 − p−H − k−
n̄ , ω̃2 = ω2 − p+H − k+

n , (76)

as seen in Eq. (47). For convenience we introduce the notation

t+n = Qk+
n , t−n̄ = Qk−

n̄ , tmax
n = Q(ω2 − p+H), tmax

n̄ = Q(ω1 − p−H), (77)

which we will often use in this section. We compute the iSF by inserting a complete set of

soft states in the position space soft function as

S(b, µ) =
∑

Xs

〈0|T̄
[
Tr

(
Sn̄T

DY †
n̄SnT

CS†
n

)
(b)

]
|Xs〉〈Xs|T

[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉,

(78)

and compute the product of matrix elements and use these results in Eq. (75). Through

next-to-leading order in the QCD coupling, the position space inverse soft function S−1(b)

that appears in Eq. (75) is obtained by inserting an overall minus sign in theO(αs) correction

to the soft function S(b) of Eq. (78).

The lowest order result for the iSF comes from choosing |Xs〉 = |0〉 and computing the

tree level result which gives

S−1(0)(tmax
n − t+n , t

max
n̄ − t−n̄ , b⊥, µ) =

N2
c − 1

4
Q2 δ(tmax

n̄ − t−n̄ )δ(t
max
n − t+n ). (79)

Higher order corrections to the term with |Xs〉 = |0〉 corresponds to virtual graphs with no

real emissions in the final state. At one loop, the virtual corrections correspond to the first

diagram and its permutations in Fig. 5 which gives the result

S−1V (1)(ω1 − p−h ,ω2 − p+h , b⊥) = −SV (1)(ω1 − p−h ,ω2 − p+h , b⊥)

= S(0)(ω1 − p−h ,ω2 − p+h , b⊥)(−2ig2CA)Is

(80)

where Is is the scaleless integral

Is = 2

∫
dd%

(2π)d
1

(%2 + i0) (n̄ · %− i0) (n · %+ i0)
, (81)
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C. Soft function: real emission

In this section we give results for the computation of the iSF which was defined earlier as

S−1(ω̃1, ω̃2, b⊥, µ) =

∫
db+db−

16π2
eib

+ω̃1/2eib
−ω̃2/2S−1(b+, b−, b⊥), (75)

where the position space soft function that appears on the RHS above is defined in Eq. (33).
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n̄ , ω̃2 = ω2 − p+H − k+

n , (76)
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t+n = Qk+
n , t−n̄ = Qk−

n̄ , tmax
n = Q(ω2 − p+H), tmax

n̄ = Q(ω1 − p−H), (77)
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S(b, µ) =
∑

Xs

〈0|T̄
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Tr

(
Sn̄T

DY †
n̄SnT

CS†
n

)
(b)

]
|Xs〉〈Xs|T

[
Tr

(
SnT

CS†
nSn̄T

DS†
n̄

)
(0)

]
|0〉,

(78)
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

• NLO result known. (SM, Petriello)
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• Schematic picture of running:
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in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization
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theorem in SCETpT takes the form

d2σ

dp2T dY
=

π

4(N2
c − 1)2

∫
dp+h dp

−
h

∫
d2k⊥

h

∫
d2b⊥
(2π)2

e−i!k⊥h ·!b⊥

× δ

[
p−h − eY

√
p2T +m2

h

]
δ

[
p+h − e−Y

√
p2T +m2

h

]
δ
[
p+h p

−
h − $k2

h⊥ −m2
h

]

×
∫ 1

0

dx1

∫ 1

0

dx2

∫
dt+n

∫
dt−n̄H(x1x2Q

2, µQ;µT ) B̃
αβ
n (x1, t

+
n , b⊥, µT ) B̃n̄αβ(x2, t

−
n̄ , b⊥, µT )

× S−1(x1Q− p−h − t−n̄
Q
, x2Q− p+h − t+n

Q
, b⊥, µT ),

(4)

where the collinear functions B̃αβ
n,n̄ are the Impact-parameter Beam Functions(iBFs). The

iBFs B̃αβ
n,n̄ are extensions of the beam functions that appear in [40, 41] and reduce to them for

b⊥ = 0 after contraction of the transverse indices α and β. The beam functions of Ref. [41]

were shown to have wide applicability to the analysis of observables at the LHC. The iBFs

are proton matrix elements evaluated at the scale µT ∼ pT . The iBFs are matched onto the

standard QCD PDFs by performing an OPE in ΛQCD/pT and the logarithms of ΛQCD/pT
are summed via the standard DGLAP equations used to evaluate the PDFs at the scale

µT ∼ pT . This is shown schematically in Fig. 1 and gives the final form of the factorization

theorem shown in Eqs.(1) and (2) where the collinear functions Iαβ
n,n̄;g,i are just the iBF to

PDF matching coefficients.

While the factorization and resummation of transverse-momentum distributions has been

studied extensively in the QCD literature, and SCET analyses [42, 43] have been performed

in the past, our analysis contains several interesting differences that we believe are worth

further investigating. A summary of the main points of this paper is given below:

1. We derive a factorization theorem for the Higgs transverse momentum and rapidity

distributions using effective field theory methods. A clear separation of the dynamics

associated with the scales Q̂ ∼ mh $ pT $ ΛQCD into perturbative Wilson coefficients

and standard QCD PDFs is achieved. Large logarithms of ratios of the relevant scales

are summed using RG equations in the effective theories. Power corrections in pT/mh

and ΛQCD/pT can be systematically derived by going to higher orders in the power

counting of the effective theories.

2. In addition to the factorization of the scales mh $ pT $ ΛQCD, the perturbative

physics of the pT scale is further factorized into an iSF S−1 and two distinct collinear

functions Iαβ
n;gi and Iαβ

n̄;gi. This additional factorization simplifies the structure of higher

order perturbative corrections at the pT scale. They can now be obtained through

higher order computations of the simpler perturbative functions S−1, Iαβ
n;gi and Iαβ

n̄;gi.

3. The factorization in SCET naturally occurs in terms of purely collinear PDFs and

soft functions. The purely collinear PDFs differ from the standard QCD PDFs by

SCET Running

DGLAP Running
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factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in αs and ln(MZ/pT ):

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

1

s p2T

∑

m,n

(
αs(µR)

2π

)n

nDm lnmM2
Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the

explicit forms for the first few coefficients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coefficients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1

2

[
A(1)

]2
fAfB,

2D2 = −3

2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[
3

2
A(1)B(1) − β0A

(1)

]
fAfB,

2D1 =

{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A − 1

2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B

−fB (Pqq ⊗ Pqq ⊗ f)A + β0 fB (Pqq ⊗ f)A
}
+ [A ↔ B] . (74)

The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

22

factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in αs and ln(MZ/pT ):

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

1

s p2T

∑

m,n

(
αs(µR)

2π

)n

nDm lnmM2
Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the

explicit forms for the first few coefficients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coefficients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1

2

[
A(1)

]2
fAfB,

2D2 = −3

2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[
3

2
A(1)B(1) − β0A

(1)

]
fAfB,

2D1 =

{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A − 1

2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B
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The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.
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=
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The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.
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FIG. 4: Numerical predictions for the transverse momentum spectrum for Higgs boson production
at the LHC for central rapidity. Shown are the fixed-order result and those obtained after imple-
menting the resummation formula of Eq. (6) through LL and NLL. The bands arise from the scale
variation shown in the text.

these would be called LL+LO and NLL+LO. We use MSTW 2008 parton distribution

functions [41]. For LL and LO predictions we use leading order PDFs with 1-loop running

of the strong coupling constant, while for our NLL results we use NLO PDFs with 2-loop

running for αs. Our results depend on the two matching scales µT and µQ, and we vary

these scales to obtain an estimate of the theoretical error. As our central scale choices we

set µ2
T = p2T and µ2

Q = −M2, and vary µ2
T , µ

2
Q independently around these choices by a

factor of 2. Two aspects of these choices require comment. Following Ref. [39], we utilize

an imaginary matching scale for µQ which has the effect of resumming factors of π2 which

arise from the time-like momentum transfer appearing in H. This was shown to improve the

convergence of the perturbative expansion for inclusive Higgs production [36, 39], and has

also been utilized in the literature to study Drell-Yan [35]. We also find better agreement

with data (see Fig. 5) for an imaginary µQ compared to a real µQ which can be attributed
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FIG. 5: Numerical predictions for the transverse momentum spectrum for Z boson production
at Tevatron Run 1, compared with data form both CDF and D0. Shown is the resummation
prediction of Eq. (5) at NLL. The bands arise from the scale variation shown in the text, while
the result for the central scale choice is shown by the solid line. The lower limit of the plot is pT=
1.75 GeV.

to the effect of resumming factors of π2 with the former choice. We also choose to vary

our scales around a reduced range to avoid evaluating αs(µT ) at too low a value when the

transverse momentum becomes small.

In Fig. 4 we show the predictions for the Higgs pT spectrum at the LHC, using both

the fixed-order expression and the resummed results at LL and NLL accuracies. The

general features of this plot are clear: large logarithms of the form ln (m2
h/p

2
T ) spoil the

fixed-order perturbative expansion at low pT . The Sudakov suppression coming from the

renormalization-group evolution of the hard function H tames this behavior. The central

value of the prediction is absolutely stable upon proceeding from LL to NLL; only a reduc-

tion of the scale variation is observed. At intermediate and high momenta, the matching

onto the fixed-order expression is smooth. The sensitivity to scale choices that can lead to

• Theory curve determined completely by perturbative 
functions and standard PDFs.
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negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form

d2σ

dΩdE ′ =
α2

Q4

E ′

E

(
Lγ

µνW
µν
γ − GF Q2

4
√

2πα
LγZ

µν W µν
γZ

)
, (2)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ

µν , (3)

• iBFs and iSF are non-perturbative:
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negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.
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∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form
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where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%

′
ν + %′µ%ν − % · %′gµν + iλεµναβ%α%

′β),

LγZ
µν = (ge

V + λge
A)Lγ
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• iBFs and iSF are non-perturbative:
!!"#$%%& '(

)*+,+#-./0#10#20#*34*567 8+9:0#!;!<#:=>,93?@+:0#A@>?B#*C@+0#D0#>EF G#

3:#9*+#H*>,F#:?>@+I J+K4K#. L-M0#N:N>@@O !P .#!Q .#G0#>EF#" 3:#BEC)E#D

R 9C#:CS+#T3U+F#C,F+,#3E#=GVW0#+K4K#*34*567 8+9:

R C,#3E#:CS+#@+>F3E4#@C4>,39*S#>==,CU3S>93CE#
JXX0#YXX0#DM#9C#>@@#C,F+,:#Z3>#,+:NSS>93CE

!NSS>,O[#9*+#GVW#!"#$%&'("$'%)*$+,%&,- TC,#*>,F5

:?>99+,3E4#J:*C,95F3:9>E?+M#3E?@N:3Z+#=,C?+::+:

\

\"

Distribution sensitive to 
transverse momentum 
dynamics in nucleon

Unintegrated nucleon 
distribution amplitudes
            (iBFs)

Inverse Soft function
           (iSF)

+

• Soft factor can be absorbed into iBFs. 
This is usually done in the TMDPDF 
formalism.



Non-Perturbative pT Region 
• Non-perturbative region of pT:

2

Contents

I. Introduction 2

II. PV DIS Phenomenology 2

III. Wolfenstein Argument 4

IV. MIT Bag Model estimates of F du
1 8

I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.
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in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming

and outgoing electrons respectively. The leptonic tensors in Eq.(2) are given by

Lγ
µν = 2(%µ%
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I. INTRODUCTION

d2σ

dp2
T dY

∼ H ⊗ B̃n ⊗ B̃n̄ ⊗ S−1 (1)

B̃n = In,i ⊗ fi, B̃n̄ = In̄,j ⊗ fj (2)

• current presicion δAPV /APV ∼ 10−6.

• all hadronic effects cancel at leading twist. APV is strong candidate for studying HT

effects.

• with a wide kinematic range, different physics topics can be entangled: BSM and

Higher twist for example. C2’s will cause a y-dependence, HT will cause a Q2 depen-

dence, CSV will appear as an x-dependence.

• HT effects are known to be large for large values of ”x”: J.Blumlein, H.Bottcher and

J.Blumlein, H.Bottcher, A. Guffanti....can then kinematically isolate F du measurement

at high x.

II. PV DIS PHENOMENOLOGY

The differential cross-section for electron-deuteron scattering takes the general form
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γ − GF Q2
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, (3)

where E and E ′ are the energies of the incoming electron and outgoing electrons respectively

in the lab frame. The square of the momentum transfer via the exchanged photon or Z-

boson is Q2 = −q2 = −(%− %′)2 where %µ and %′µ denote the four-momenta of the incoming
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negative results [15] in the standard approach, does not occur in this effective field theory

approach. This allows the matching scale µQ to be varied throughout a range sufficient to

use it as an estimator of the theoretical uncertainty.

One aspect of transverse resummation in SCET that requires further study is the treat-

ment of the non-perturbative region pT ∼ ΛQCD. In our analysis, the transverse momentum

function G becomes non-perturbative, and must be modeled. The onset of this region can

be seen in the plot by the large scale variation at low pT , which is caused by evaluating

αs(µT ) ∼ αs(ΛQCD). Since this object has a non-pertubative definition in terms of operator

matrix elements and a well-defined running, it is reasonable to extract this function using

available data. We defer this to later work, and in our plot for the Higgs pT distribution we

simply stop our plot at a lower value of pT = 3 GeV.

In Fig. 5 we plot our prediction for the Z-boson pT distribution at the Tevatron Run 1,

and compare to data from CDF [24] and D0 [23]. We study the spectrum down to pT = 1.75

GeV. The agreement with the data is excellent over the entire range. The low pT version

of this data can eventually be used to constrain the non-perturbative TMF that appears in

SCET, as is done in the CSS approach [42].

VIII. CONCLUSIONS

In this manuscript we have extended our analysis of transverse momentum distributions

using the Soft-Collinear Effective Theory(SCET) to account for both electroweak and Higgs

boson production at low pT in hadronic collisions. We have derived a factorization theorem

for the transverse momentum distribution for the production of electroweak gauge boson

production, and have provided all necessary analytic expressions to perform resummation

of low-pT distributions for any color-neutral particles to next-to-leading-logarithmic accu-

racy. Our effective field theory approach is free of the Landau pole that appears in the

standard approach even for perturbative values of pT . We thus have a numerically stable

matching to the fixed-order QCD result, leading to a smooth transition from the low-pT
resummation region to the intermediate and high pT region without the need for a matching

prescription. For perturbative values of pT , our approach predicts the transverse momentum

distribution entirely in terms of field-theoretically derived perturbative functions and stan-

dard initial state PDFs. For non-perturbative values of pT , an additional non-perturbative

Transverse Momentum Function (TMF) appears with a rigorous field-theoretic definition

and computable anomalous dimension.

We have presented the first numerical predictions for pT spectra arising from SCET for

Higgs and Z-boson production, and for Z boson production have shown an initial numerical

comparison with Tevatron data. The agreement with data is excellent over the kinematic

range currently covered by our factorization formula, indicating that SCET will provide a

useful framework for the analysis and interpretation of hadron collider distributions.
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calculable result as one increases pT . We write Gqrs in the form

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT ) =

∫ ∞

0

dp′T G
qrs
part.(x1, x2, x

′
1, x

′
2, pT

√

1 + (p′T/pT )
2, Y, µT )

× Gmod(p
′
T , a, b,Λ),

(11)

which is a convolution of the partonic result for the TMF function G
qrs
part. with a model

function Gmod [45–47]. This form is reminiscent of that used in the CSS approach, where

the integrand of the Fourier transform is decomposed according to

W (b) = W (b∗)W
NP (b), b∗ =

b
√

1 + (b/bmax)2
. (12)

W (b) is the perturbative resummed contribution and WNP denotes the non-perturbative

contribution. bmax is a free parameter typically taken to be of order 1GeV−1.

We parametrize our non-perturbative contribution as

Gmod(p
′
T , a, b,Λ) =

N

Λ2

(

p′ 2T
Λ2

)a−1

exp
[

−
(p′T − b)2

2Λ2

]

, (13)

and fix N by the normalization condition
∫ ∞

0

dp′T Gmod(p
′
T , a, b,Λ) = 1. (14)

In principle, the model function Gmod can have flavor indices r, s. For the sake of simplicity

we will work with a flavor-independent model function Gmod. Different choices of the pa-

rameters a, κ,Λ correspond to different model choices for the non-perturbative TMF Gqrs.

The model function parameters are chosen such that Gmod will peak at p′T ∼ ΛQCD with

an exponential fall off for larger values of p′T . As a result, Gqrs in Eq. (11) receives sizeable

contributions only from the region p′T ∼ ΛQCD. Thus, in the region pT $ ΛQCD one can

Taylor expand G
qrs
part. around the limit pT $ p′T ∼ ΛQCD. When combined with Eq. (14) this

gives

Gqrs(x1, x2, x
′
1, x

′
2, pT , Y, µT )

∣

∣

∣

pT%ΛQCD

= G
qrs
part.(x1, x2, x

′
1, x

′
2, pT , Y, µT ) +O(

ΛQCD

pT
).

(15)

In the region of perturbative pT , the function Gqrs properly reduces to its perturbative

limit with all model dependence suppressed by powers of ΛQCD/pT . In this way, the model

dependence is restricted to the non-perturbative region, as expected. The perturbative

region of the pT spectrum remains calculable in a model-independent way to leading order in

ΛQCD/pT . One could consider more sophisticated model functions that contain x-dependence
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(Hoang, Ligeti, Stewart, Tackmann)

• Similar to analysis done in CSS with “bmax”.



Including the Non-Perturbative Region

• pT spectrum including the 
non-perturbative region

FIG. 1: The result for the pT -spectrum of the Z-boson for the best fit parameter choices a =

2.25, b = 0.1GeV,Λ = 0.45GeV. We have also set µ2
Q = −M2

Z and µ2
T = p2T + p2Tmin where

pTmin = 1 GeV. The data points were collected by the CDF and D0 collaborations [22, 23].

and that incorporate additional effects, but we restrict ourselves in this initial analysis to

the form of Eq. (13).

The implementation of the model also requires care regarding the choice of the scale

µT . In the perturbative pT region, the scale µT ∼ pT is the appropriate choice. However,

one cannot use µT ∼ pT when pT is of order ΛQCD or smaller. The RG equations for the

evolution of the hard function Hq
Z(x1x2Q2, µQ;µT ) become non-perturbative in this region,

and G
qrs
part. in Eq. (11) becomes incalculable. A sensible choice for µT that can be applied in

both the perturbative and non-perturbative pT regions is

µ2
T = ξ2 p2T + p2Tmin, (16)

where pTmin ∼> 1 GeV is a low, but still perturbative, scale and can be viewed as another

parameter of the model. It is analogous to the parameter bmax that appears in the CSS

approach to transverse momentum resummation. ξ is a scale variation parameter we take to

be O(1). The above choice of scale for µT has several useful properties. As pT → 0, the scale

µT → pTmin so that Gqrs
part in Eq. (11) is still evaluated at a perturbative scale. Similarly, the

running of the hard function Hq
Z(x1x2Q2, µQ;µT ) will freeze at the perturbative scale pTmin

as pT → 0. For larger values of pT $ pTmin ∼> 1 GeV, µT → ξ pT so that the appropriate

choice of µT ∼ pT in the perturbative region is recovered.

9

FIG. 2: The result of varying the model parameters a, b, and Λ within their 68% confidence level

allowed region. We have chosen µ2
Q = −M2

Z , µ
2
T = p2T + p2Tmin with pTmin = 1 GeV. We see that

the variation of the model parameters only affects the very low pT region and has a negligible effect

in the region pT " ΛQCD. The data points are from the CDF and D0 collaborations [22, 23].

We now present an example fit of the TMF function Gqrs to Tevatron data for the Z-

boson pT spectrum. We choose µ2
Q = −M2

Z [48, 49], µT as in Eq. (16) with ξ = 1, and

for simplicity set pTmin = 1 GeV. We note that this ensures that the scale µT at which the

PDFs are evaluated always remains at or above the initial scale Q0 = 1 GeV used in the

MSTW fit [50], a criterion pointed out in previous work in the CSS approach [31]. We then

perform a chi-squared fit of the parameters a, b, and Λ in Eq.(13) against CDF data [22]; for

simplicity we do not include the D0 data in this example fit. The best fit values obtained

are a = 2.25, b = 0.1GeV,Λ = 0.45GeV with a goodness-of-fit measure χ2/d.o.f. ∼ 0.7.

The result for these best fit values are shown in Fig. 1 along with the CDF and D0 data

points. Fig. 1 shows that the TMF model is flexible enough to give a good description of

data in the region pT < 1 GeV where non-perturbative transverse momentum dynamics

becomes important. At the same time, a good description of the data is also achieved

for larger perturbative values of pT where the result is given in terms of a perturbatively

calculable TMF function. The model dependence introduced byGmod turns off in the region

pT " ΛQCD, as expected. This is further illustrated in Fig. 2 where we show the results for

the 68% confidence level region in the parameters a, b, and Λ. We see in Fig. 2 that while the

different parameter choices affect the pT -distribution in the non-perturbative region, there is

10

• Model dependence restricted 
only to non-perturbative region 
as expected.



Summary
• Factorization formula:

• Perturbative pT distribution given in terms of perturbatively 
calculable functions and the standard PDFs.
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in hadronic collisions has been under investigation since the early days of QCD [27–29]. It

has been studied for the Higgs boson following the seminal analysis of Collins, Soper, and

Sterman (CSS) [30, 31] in several works [32–36].

The purpose of this paper is to derive a factorization theorem for the Higgs transverse

momentum pT and rapidity Y distribution, in the region Q̂ ∼ mh " pT " ΛQCD, using the

Soft Collinear Effective Theory(SCET) [37–39]. Here Q̂ and mh denote the partonic center

of mass energy and the Higgs mass respectively. Although we focus on Higgs production,

our methods and results can be immediately generalized to the differential distributions of

any one or more color neutral particles. The factorization theorem we derive has the form

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1, x2, µQ;µT )Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ), (1)

where Q is the hadronic center of mass energy, H is the hard Wilson coefficient arising

matching QCD onto SCET, and fi/P is the standard parton distribution function (PDF) for

taking a parton of species i from the proton. Gij is a perturbative coefficient at the pT scale

that has the form

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(b⊥ pT ) g
⊥
ασg

⊥
βω

× Iαβ
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iσω
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT ) (2)

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT ),

which is a convolution over the collinear functions Iαβ
n,n̄;g,i and the Inverse Soft Function (iSF)

S−1. Logarithms of mh/pT are summed by the Renormalization Group (RG) equations in

SCET and are encoded in H(x1, x2, µQ;µT ) which is the hard coefficient evolved from the

renormalization scale µQ ∼ mh down to µT ∼ pT . The logarithms of ΛQCD/pT are summed

via the standard DGLAP evolution of the PDFs and are encoded in the PDFs evaluated at

µT ∼ pT . The factorization formula in Eq.(1) is derived by matching QCD onto a sequence

of effective field theories EFT:

QCD(nf = 6) → QCD(nf = 5) → SCETpT → SCETΛQCD , (3)

which is shown graphically in Fig. 1. The first step QCD(nf = 6) → QCD(nf = 5) denotes

the usual procedure of integrating out the top quark to get an effective coupling of the Higgs

to gluons. The Higgs production mechanism then proceeds via this effective coupling. The

hard scale Q̂ ∼ mh is then integrated out by matching onto SCETpT , which describes the

dynamics of soft and collinear modes with transverse momenta of order pT . The factorization

19

In terms of the pT and Y variables, related to the Mandelstam u and t variables as in

Eq. (29), we have

d2σ

dp2
T dY

=
π2

4(N2
c − 1)2Q2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dx′
1

x′
1

∫ 1

x2

dx′
2

x′
2

× H(x1x2Q
2, µQ;µT )Gij(x1, x

′
1, x2, x

′
2, pT , Y, µT )fi/P (x

′
1, µT )fj/P (x

′
2, µT ),

(50)

where we have defined the pT and Y dependent perturbative function

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

∫
dt+n

∫
dt−n̄

∫
d2b⊥
(2π)2

J0(|#b⊥|pT )

× Iβα
n;g,i(

x1

x′
1

, t+n , b⊥, µT ) Iβα
n̄;g,j(

x2

x′
2

, t−n̄ , b⊥, µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, b⊥, µT )

(51)

E. Momentum space vs impact-parameter space

As seen in the last section, the factorization formula for the pT , Y and u, t dis-

tributions involved the functions Gij(x1, x′
1, x2, x′

2, pT , Y, µT ), defined in Eq. (51), and

Gij(x1, x′
1, x2, x′

2, u, t, µT ), defined in Eq. (49), respectively. These functions are defined

in terms of impact-parameter space Wilson coefficients Iβα
n,n̄;g,i(z, t, b⊥) and the impact-

parameter space iSF S−1(k−, k+, b⊥). We can now introduce momentum space Wilson

coefficients and a momentum-space iSF via

Iβα
n,n̄;g,i(z, t, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥Iβα
n,n̄;g,i(z, t, b⊥),

S−1(k−, k+, k⊥) =

∫
d2b⊥
4π2

e−i#k⊥·#b⊥S−1(k−, k+, b⊥), (52)

so that the function Gij(x1, x′
1, x2, x′

2, pT , Y, µT ) can be written as

Gij(x1, x
′
1, x2, x

′
2, pT , Y, µT ) =

1

2π

∫
dt+n

∫
dt−n̄

∫
d2k⊥

n

∫
d2k⊥

n̄

∫
d2k⊥

s

δ(pT − |#k⊥
n + #k⊥

n̄ + #k⊥
s |)

pT

× Iβα
n;g,i(

x1

x′
1

, t+n , k
⊥
n , µT ) Iβα

n̄;g,j(
x2

x′
2

, t−n̄ , k
⊥
n̄ , µT )

× S−1(x1Q− eY
√

p2
T +m2

h −
t−n̄
Q
, x2Q− e−Y

√
p2
T +m2

h −
t+n
Q
, k⊥

s , µT )

(53)

with no reference to b⊥. The expression for Gij(x1, x′
1, x2, x′

2, u, t, µT ) can be trivially obtained

from Eq. (53) by rewriting the pT and Y variables in terms of the u and t variables by

Factorization Formula

• One can express the formula entirely in momentum space:
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factorization scale µF . We organize our result following the notation of Ref. [38] into a joint

expansion in αs and ln(MZ/pT ):

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

1

s p2T

∑

m,n

(
αs(µR)

2π

)n

nDm lnmM2
Z

p2T
. (73)

We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the

explicit forms for the first few coefficients appearing in the CSS expansion of Eq. (61): A(1) =

2CF , B(1) = −3CF . Introducing the nomenclature fq/P (xA, µF ) = fA, fq̄/P (xB, µF ) = fB,

we find the following results for the first few coefficients:

1D1 = A(1)fAfB,

1D0 = B(1)fAfB + fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B ,

2D3 = −1

2

[
A(1)

]2
fAfB,

2D2 = −3

2
A(1)

[
fB (Pqq ⊗ f)A + fA (Pqq ⊗ f)B

]
−
[
3

2
A(1)B(1) − β0A

(1)

]
fAfB,

2D1 =

{
−A(1)fB (Pqq ⊗ f)A ln

µ2
F

M2
Z

− 2B(1)fB (Pqq ⊗ f)A − 1

2

[
B(1)

]2
fAfB

+
β0

2
A(1)fAfB ln

µ2
R

M2
Z

+
β0

2
B(1)fAfB − (Pqq ⊗ f)A (Pqq ⊗ f)B

−fB (Pqq ⊗ Pqq ⊗ f)A + β0 fB (Pqq ⊗ f)A
}
+ [A ↔ B] . (74)

The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.
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scale µQ, as suggested recently [39]). Only terms through O(α2
s) are kept. We introduce the
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The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,
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2n−2,

next-to-next-to-leading logarithmic : αn
sL
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The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.

(Arnold, Kaufmann; Ellis)
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We set µQ = MZ and µT = pT (we comment later on the choice of an imaginary matching

scale µQ, as suggested recently [39]). Only terms through O(α2
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The coefficients 1D1, 1D0, 2D3, and 2D2 agree2 with the analogous nCm coefficients of

Ref. [38] that appear in both the fixed-order expansion and the CSS formalism. Differ-

ences occur in 2D1; the 2C1 formalism of the usual approach contains two additional terms

depending on the quantities A(2) and C(1). This is not surprising, as our result has been

computed only to next-to-leading logarithmic accuracy. These terms in the expansion are

of next-to-next-to-leading logarithmic order. Denoting L = lnM2
Z/p

2
T , we remind the reader

that resummation to a given order gives the following towers of logarithms [10]:

leading logarithmic : αn
sL

2n−1,

next-to-leading logarithmic : αn
sL

2n−2,

next-to-next-to-leading logarithmic : αn
sL

2n−3. (75)

The full result at next-to-next-leading logarithmic accuracy along with the complete result

for 2D1 requires the next higher order calculation of the TMF. However, some of the next-to-

next-to-leading order logarithmic terms can be already seen to appear in the partial result

2 We disagree with the statement made in Ref. [40] that our formalism does not correctly resum logarithms

at the next-to-leading-logarithmic order; our explicit check makes it clear that this claim is incorrect.
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The function F appearing in the integrand takes the following form in the first region after

this simplification:

Fqq̄(x1, x
∗
2) → fq/P (x1)fq̄/P (x

∗
2)×

1

p2T

[
1 +

(
xA

x1

)2
]
, (70)

where for simplicity of presentation we have suppressed the overall constants which appear.

A similar simplification and structure are obtained in the other part of the integration.

We reduce this further by simplifying the remaining integrals over the xi, following the

procedure outlined in Ref. [47]. To facilitate comparison with results in the literature we

introduce the standard notation for the convolution of two functions,

(f ⊗ g) (z) =

∫ 1

0

dxdy f(x)g(y)δ(z − xy), (71)

and remind the reader of the leading-order DGLAP kernel

Pqq(x) = CF

[
1 + x2

1− x

]

+

. (72)

We also introduce the following combinations of coupling constants to match the notation

in Ref. [48], with which we eventually compare:

e2qq̄ =
1

16cos2θW

[
1 + (1− 4|eq|sin2θW )2

]
. (73)

For simplicity we continue to focus on the qq̄ partonic channel. After straightforward ma-

nipulations we arrive at our result for the differential distribution:

d2σZ,qq̄

dp2TdY
=

4π2

3

α

sin2θW
e2qq̄

αs(µT )

2π

1

s p2T

{
2CFfq/P (xA, µT )fq̄/P (xB, µT ) ln

M2
Z

p2T
− 3CFfq/P (xA, µT )fq̄/P (xB, µT ) + fq/P (xA, µT )

(
Pqq ⊗ fq̄/P

)
(xB)

+ fq̄/P (xB, µT )
(
Pqq ⊗ fq/P

)
(xA)

} ∣∣∣exp
{
CF

4

αs

π

[
−ln2µ

2
Q

µ2
T

+ 3 ln
µ2
Q

µ2
T

]} ∣∣∣
2

.

(74)

We have explicitly denoted the scales which appear in the overall coupling constant and in

the PDFs. We note that the solution for the evolution factor UHq
Z
can be obtained from

Ref. [31]; to the order in αS we are working, the different momentum scales which appear

in the evolution factors in the partonic cross section do not matter, and a simple overall

exponential factor is obtained in the differential cross section.

To compare the structure of logarithms with those obtained in the CSS approach, we

first use renormalization-group arguments to evolve all coupling constants which appear to

an arbitrary renormalization scale µR, and similarly use DGLAP to evolve all PDFs to the
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